MCS HOG Features and SVM Based Handwritten Digit Recognition System
نویسندگان
چکیده
منابع مشابه
MCS HOG Features and SVM Based Handwritten Digit Recognition System
Digit Recognition is an essential element of the process of scanning and converting documents into electronic format. In this work, a new Multiple-Cell Size (MCS) approach is being proposed for utilizing Histogram of Oriented Gradient (HOG) features and a Support Vector Machine (SVM) based classifier for efficient classification of Handwritten Digits. The HOG based technique is sensitive to the...
متن کاملCombining SVM Classifiers for Handwritten Digit Recognition
In this paper, we investigate the advantages and weaknesses of various decision fusion schemes using statistical and rule-based reasoning. The cooperation schemes are applied on two SVM (Support Vector Machine) classifiers performing classification task on two feature families referenced as structural and statistical features. The obtained results show that it is difficult to exceed the recogni...
متن کاملFPGA-Based Farsi Handwritten Digit Recognition System
A new method for feature extraction based on FPGA (Field Programmable Gate Arrays) implementation is proposed in this paper. The specific application is offline Farsi handwritten digit recognition. The classification is based on a simple two layer MLP (Multi Layer Perceptron). This method of feature extraction is appropriate for FPGA implementation as it can be implemented only with addition an...
متن کاملHandwritten digit recognition using biologically inspired features
Image recognition problems are usually difficult to solve using raw pixel data. To improve the recognition it is often needed some form of feature extraction to represent the data in a feature space. We use the output of a biologically inspired model for visual recognition as a feature space. The output of the model is a binary code which is used to train a linear classifier for recognizing han...
متن کاملHandwritten Digit Recognition using Slope Detail Features
In this paper, new features called Slope Detail (SD) features for handwritten digit recognition have been introduced. These features are based on shape analysis of the digit image and extract slant or slope information. They are effective in obtaining good recognition accuracies. When combined with commonly used features, Slope Detail features enhance the digit recognition accuracy. KNearest Ne...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Intelligent Learning Systems and Applications
سال: 2017
ISSN: 2150-8402,2150-8410
DOI: 10.4236/jilsa.2017.92003